小程序
传感搜
传感圈

The Future of Tower Infrastructure: Embracing IoT, Machine Learning, and Edge Computing

2023-09-13 11:02:46
关注

Illustration: © IoT For All

The telecommunications industry is undergoing a remarkable transformation, heavily fueled by the convergence of IoT, machine learning, and edge computing. This convergence is not only creating new opportunities for Mobile Network Operators (MNOs) and Tower Operations but also presents challenges that must be addressed to fully leverage the potential of these technologies. 

Tower Operating

The advent of the Fourth Industrial Revolution is filled with opportunities. Tower Operating entities stand to gain from a few improved ways of work and efficiency gains, enabled by technology. These include: 

  1. Improved efficiency and performance: The deployment of IoT sensors to monitor the health of towers and equipment, combined with machine learning algorithms, enables the identification of patterns and anomalies indicative of potential problems.

    With this information, MNOs can schedule preventive maintenance and repairs, reducing downtime and enhancing network performance. A study by Cisco revealed that embracing IoT and machine learning to optimize tower infrastructure could lead to up to 30 percent savings in operational costs.
  2. Energy Management: Embracing IoT and machine learning enables pro-active and more intelligent energy management at tower sites, presenting a significant opportunity to optimize energy consumption and reduce operational costs.

    According to a study conducted by the International Energy Agency (IEA), the implementation of IoT-based energy management solutions can lead to energy savings of up to 30 percent in the telecommunications sector, positively impacting both the bottom line and environmental sustainability.

    By leveraging real-time data from IoT sensors and utilizing machine learning algorithms to predict energy demand patterns and shifting energy consumption across storage options, MNOs can achieve greater efficiency in power utilization, while contributing to a greener and more economically viable tower infrastructure.
  3. Enhanced security and safety: The integration of IoT and machine learning can significantly bolster security and safety at tower sites. IoT sensors can detect unauthorized access to towers, while machine learning can analyze data from security cameras, logs, incidents, and new insights to identify potential threats.

    Frost & Sullivan’s study indicated that the use of IoT and machine learning for tower site security could reduce the risk of vandalism and theft by up to 50 percent.
  4. New services and applications: IoT and machine learning open the door to innovative services and applications that were once deemed impossible. MNOs can employ IoT sensors to track the movement of people and vehicles, while machine learning analyzes this data to identify patterns and trends.

    The insights gained could facilitate real-time traffic updates, route optimization, or even crime prevention. According to ABI Research, the market for IoT-enabled MNO services is projected to reach a staggering $100 billion by 2025.
  5. Smarter Infrastructure Sharing: The implementation of IoT and machine learning in tower infrastructure opens the door to enhanced infrastructure-sharing opportunities. Companies can leverage data-driven insights to identify suitable co-location partners, optimize tower space utilization, and negotiate mutually beneficial agreements.

    This can result in reduced capital expenditure and operational costs for tower operators while enabling companies to expand their network coverage more efficiently, and strategically. 

Key Challenges

There are however three key challenges that will prohibit advancement: 

  1. Investment in new technologies and infrastructure: While the potential benefits are substantial, embracing IoT and machine learning requires significant investments in new hardware and software to support these technologies. However, these investments are essential to stay competitive and meet the evolving demands of customers.
  2. Managing vast amounts of data: The marriage of IoT and machine learning generates an overwhelming amount of data that must be effectively managed. MNOs will need to develop robust data management and analytics capabilities to derive meaningful insights from this data. According to IDC, by 2025, the average MNO is expected to generate a staggering 200 terabytes of data per day.
  3. Adapting to new business models: With new technology comes new ways of working. A shift to a more proactive approach requires the alignment of people, processes, and technology requiring a significant rethinking of existing reporting structures, operating procedures, and toolsets. The upside of proactive operations will be limited by the inability of operators to adapt appropriately. 

As IoT, machine learning, and edge computing become integral components of tower infrastructure, Mobile Network Operators stand to gain numerous advantages. By fully embracing these transformative technologies, MNOs can enhance the efficiency and performance of their networks, introduce novel services and applications, and maintain a competitive edge in the rapidly evolving telecommunications industry. 

Tweet

Share

Share

Email

  • Telecommunications
  • Cellular
  • Edge Computing
  • Machine Learning

  • Telecommunications
  • Cellular
  • Edge Computing
  • Machine Learning

参考译文
塔式基础设施的未来:拥抱物联网、机器学习与边缘计算# 示例输入与输出**输入**人工智能(AI)是计算机科学的一个分支,旨在开发表现出人类智能的软件或机器。这包括从经验中学习、理解自然语言、解决问题以及识别模式。**输出**人工智能(AI)是计算机科学的一个分支,旨在开发表现出人类智能的软件或机器。这包括从经验中学习、理解自然语言、解决问题以及识别模式。
插图:© IoT For All --> 电信行业正经历着一场显著的变革,而这一变革主要由物联网(IoT)、机器学习和边缘计算的融合推动。这种融合不仅为移动网络运营商(MNO)和塔楼运营方创造了新的机遇,也带来了必须解决的挑战,以便充分释放这些技术的潜力。 塔楼运营 第四次工业革命的到来带来了诸多机遇。塔楼运营方可以借助技术实现工作方式和效率的提升,其中包括: **提升效率与性能:** 部署物联网传感器来监测塔楼和设备的健康状况,结合机器学习算法,能够识别出可能问题的模式和异常。借助这些信息,MNO可以安排预防性维护和修理工作,从而减少停机时间并提升网络性能。思科的一项研究表明,采用物联网和机器学习优化塔楼基础设施,最高可节省30%的运营成本。 **能源管理:** 接入物联网和机器学习可以实现更积极、更智能的能源管理,为优化能源消耗和降低运营成本提供了重大机会。根据国际能源署(IEA)的一份研究,实施基于物联网的能源管理解决方案,可以为电信行业带来高达30%的能源节约,对利润和环境可持续性产生积极影响。通过利用物联网传感器的实时数据,并使用机器学习算法预测能源需求模式以及在不同存储选项间转移能源消耗,MNO能够更高效地利用电力,同时为建设绿色且经济可行的塔楼基础设施做出贡献。 **增强安全性与安全性:** 物联网和机器学习的融合可以显著提升塔楼站点的安全性与安全性。物联网传感器可以检测未经授权的进入行为,而机器学习则可以分析来自安全摄像头、日志记录、事件和新信息的数据,以识别潜在威胁。Frost & Sullivan的一项研究显示,采用物联网和机器学习进行塔楼站点的安全防护,可将破坏和盗窃风险降低多达50%。 **新服务与应用:** 物联网和机器学习打开了曾经被认为不可能实现的创新服务与应用的大门。MNO可以使用物联网传感器追踪人员和车辆的流动,同时机器学习分析这些数据以识别模式和趋势。获得的洞察可用于实时交通更新、路线优化,甚至犯罪预防。根据ABI Research的预测,到2025年,物联网支持的MNO服务市场规模将飙升至1000亿美元。 **更智能的基础设施共享:** 在塔楼基础设施中实施物联网和机器学习,为基础设施共享带来了更多机会。企业可以利用数据驱动的洞察来识别合适的共用位置合作伙伴、优化塔楼空间利用,并达成互利协议。这可减少塔楼运营商的资本支出和运营成本,同时使企业更高效、更战略性地扩展其网络覆盖范围。 **主要挑战** 然而,将有三个关键挑战阻碍这一进程: **对新技术和基础设施的投资:** 虽然潜在的收益巨大,但采用物联网和机器学习需要在支持这些技术的新硬件和软件上进行大量投资。然而,这些投资对于保持竞争力和满足客户不断变化的需求至关重要。 **处理海量数据:** 物联网和机器学习的结合产生了海量的数据,必须进行有效管理。MNO需要发展强大的数据管理与分析能力,以从这些数据中获得有意义的洞察。根据IDC的数据,到2025年,平均每个MNO预计每天将生成高达200TB的数据。 **适应新的商业模式:** 新技术的出现意味着工作方式的改变。转向更积极主动的运营方式,需要在人员、流程和技术之间达成一致,这需要对现有的报告结构、操作程序和工具进行全面的重新思考。如果运营商无法适当适应,那么积极主动的运营所带来的优势将受到限制。 随着物联网、机器学习和边缘计算逐渐成为塔楼基础设施的重要组成部分,移动网络运营商将获得众多优势。通过全面拥抱这些变革性技术,MNO可以提高其网络的效率与性能,推出新的服务和应用,并在快速发展的电信行业中保持竞争优势。 推文分享分享邮件 电信 蜂窝网络 边缘计算 机器学习 --> 电信 蜂窝网络 边缘计算 机器学习
您觉得本篇内容如何
评分

评论

您需要登录才可以回复|注册

提交评论

广告
提取码
复制提取码
点击跳转至百度网盘