小程序
传感搜
传感圈

How AI is unlocking valuable opportunities in the insurance industry

2023-09-15 13:18:35
关注

  •  

The cloud is driving significant transformation in the insurance industry, extending far beyond simply storage and accessibility. Through cloud technologies, insurers can leverage AI to automate, optimise and transform tasks, tools and processes to an extent that was previously impossible given the limitations of on-prem legacy infrastructure.

AI and automation are unlocking a huge variety of opportunities for insurers, from data analytics and scalability at speed to liberating human talent to focus on high-value initiatives. (Photo by Viktoria Kurpas via Shutterstock)

The increased sophistication of machine learning (ML) algorithms has grown through the vast expansion in data used to train them, with increased computing power helping to unlock more capabilities. From claims forecasting and fraud protection to ESG risk integration and reporting, the insurance sector is harnessing the capabilities of AI to transform everyday operations and reach value at a quicker pace.

“Capabilities are being brought to market to help not only insurers, but all industries, to extract value out of insights using AI,” says Sully McConnell, head of insurance at data cloud company Snowflake. “I think we’ll see that accelerate and deliver more value quickly.”

The insurance industry’s state of AI maturity is catching up with more digitally advanced areas within financial services. Greater use of automation is empowering insurers to scale at speed and liberate human talent to prioritise value-added activities, while also enhancing risk management and ensuring compliance in an increasingly complex and demanding regulatory landscape. But successful implementation requires increased access to data, careful consideration of technical capabilities and the human aspects of change management if it is to succeed.

Free White Paper

Fueling innovation in Insurance with AI

By Dataiku

Enter your details to receive the free paper:

    Visit our privacy policy for more information about our services, how New Statesman Media Group may use, process and share your personal data, including information on your rights in respect of your personal data and how you can unsubscribe from future marketing communications.  Our services are intended for corporate subscribers and you warrant that the email address submitted is your corporate email address.  

Thank you. Please check your email to download the white paper.

Transforming insurance processes with AI

“You don’t solve a problem simply by applying AI. You need very specific techniques and methods which may involve AI components, be it an anomaly detection algorithm, a recommendation engine, or a large language model that’s synthesising information,” says John McCambridge, global solutions director of financial services and insurance at Dataiku.

“Every function in insurance is trying to introduce data science, ML and analytics into how they approach their particular function within the organisation,” adds McConnell. “The big ones still tend to be simplifying the claims process and trying to optimise the organisation’s claim handler bandwidth. Ultimately, I believe advanced carriers will leave no stone unturned in trying to apply analytics to business processes.”

AI helps to automate and expedite the claims process, involving initial assessment and processing, which leads to faster payouts and improved customer satisfaction, as well as helping insurers in assessing risks and determining appropriate premiums for policyholders.

“Risk teams operate where there’s a lot of quieter work going on, with very powerful pieces of AI. More generally across analytics, data, pipelining and automation work, Audit teams are becoming more effective and can process large amounts of data quickly, replicating their efforts more consistently,” says McCambridge. 

Algorithms can also help to identify suspicious patterns and anomalies in data that allow insurers to detect and prevent fraudulent activities. Insurers use traditional and AI models for efficient fraud detection. These models rely on the previous cases of fraudulent activity and apply statistical techniques to analyse them. Predictive modelling techniques are applied to analyse and filter fraud instances and identify links between suspicious activities, which helps to recognise fraud schemes that previously went unrecognised. 

Alongside enhanced fraud detection, predictive maintenance can also help to anticipate and prevent losses through data analysis from sensors and devices, particularly in property and casualty insurance.

Enhancing customer insights

“There’s so much interesting third-party data now that you can build a very broad profile of your customer to get insights into potential future loss costs with data science models to bring that into the underwriting process,” says McConnell.

Automated underwriting could also develop to involve automating the entire process to enhance efficiency and reduce the need for manual work, giving teams more time to focus on value-added opportunities and a higher standard of customer responsiveness.

AI-powered chatbots and virtual assistants are enhancing customer interactions by providing real-time assistance, answering queries, and guiding customers through policy information and claim procedures. It can help to personalise policies by analysing customer data to create tailored insurance policies, which contributes to further customer satisfaction. But a pragmatic view of AI applications recognises that AI is not a magic solution, but rather a tool to drive innovation, efficiency and competitive edge in these areas through value-added capabilities.

AI is not a magic solution for the insurance industry

“AI should be a continuation of other components involved in a data project, be that data wrangling and accessing computing resources, analytics, data quality, applying business rules, dashboarding insights, and so on,” says McCambridge. “All of these components need to be brought together to deliver a project effectively using AI.”

“We’re at the cusp of an interesting set of capabilities,” adds McConnell. “Sophisticated carriers have strong data and analytics teams and have been able to obtain insights relatively well. The challenge in recent years has been operationalising them or embedding a model in a transactional process.”

Ingredients for AI maturity

A well-architected cloud environment gives employees access to data and compute. Dataiku and Snowflake’s AI solution is an example of a powerful mechanism to leverage data and compute to deliver insights and outputs across all personas in an organisation.

“The barrier to AI maturity is not people, it’s process,” says McCambridge. “You can’t expect people to effectively solve problems without access to tools for problem-solving or the necessary data. You need data, compute, and a way of leveraging it.”

These ingredients for AI maturity require leaders to instil a data-driven culture through the organisation, bringing in the right technology and ensuring that existing processes are effective in allowing technologies to be leveraged properly.

“[AI maturity] has to be driven by the organisation’s culture such that the decision-makers and implementers in the organisation feel aligned and clear about what they’re trying to achieve,” McCambridge continues.

A common tooling environment

The automating of claims and underwriting workflows is evolving the role of subject matter experts as a result. Some tasks previously handled by subject matter experts, such as manual data analysis, are being automated, but the need for subject matter experts remains crucial for refining AI models, interpreting complex cases, ensuring ethical and legal compliance, and maintaining an in-depth understanding of the insurance landscape.

Close collaboration between operational staff and data scientists is essential for insurers to scale AI projects. Removing silos and granting access to digital tools and knowledge is crucial.

Similarly, isolating a centre of excellence and populating it solely with data scientists or analysts will not provide the necessary value and may expose new challenges. Ensuring the technology accessible to the centre of excellence is also available to others is essential to avoid isolating and constraining effectiveness.

A tooling set-up that allows insurers to leverage traditional and ML capabilities is the most effective solution.

Dataiku and Snowflake offer a claims modelling solution that provides opportunities to build a generalised linear model (GLM) in parallel to an ML model, using ML and AI capabilities to augment an insurer’s creation of a traditional model or vice versa. This allows insurers to work faster with greater confidence and harness the opportunities to explore new capabilities, without being isolated from technology or data, or being slowed down by manual, mundane tasks.

Insurers have been effectively using analytics and statistical analysis since the industry was founded, and AI is merely an extension of these capabilities, which enables insurers to utilise time and talent more effectively, unlocking value-added opportunities at a quicker pace.

Topics in this article : sponsored

  •  

参考译文
人工智能如何在保险行业释放宝贵机遇
云正在推动保险业的重大变革,远远超出简单的存储和访问。通过云技术,保险公司可以利用人工智能(AI)自动优化和转型任务、工具和流程,而这在传统本地基础设施的限制下是无法实现的。人工智能和自动化为保险公司打开了大量的机会,从快速实现数据和可扩展性,到释放人类人才,专注于高价值的项目。(图片由Viktoria Kurpas通过Shutterstock提供)随着用于训练机器学习(ML)算法的数据量的大幅增长,机器学习算法的复杂性也得到了提升,而计算能力的增强则帮助解锁了更多功能。从理赔预测和欺诈保护到环境、社会和治理(ESG)风险整合和报告,保险业正在利用人工智能的能力转型日常运营,并更快地实现价值。“我们正在提供市场能力,不仅帮助保险公司,还帮助所有行业,通过人工智能提取洞察的价值。”数据云公司Snowflake的保险部门负责人Sully McConnell表示。“我认为我们将看到这种趋势加速,并快速释放更多价值。”保险业的人工智能成熟度正在追赶金融服务中更加数字化的领域。自动化使用程度的提高使保险公司能够快速扩展规模,释放人力资源优先专注于价值创造活动,同时也增强了风险管理,确保在日益复杂、严格的监管环境下符合合规要求。但成功的实施需要增加对数据的访问,仔细考虑技术能力,以及在变革管理中关注人为因素。免费白皮书《通过人工智能推动保险业创新》由Dataiku提供输入您的详细信息以接收免费白皮书:国家*英国美国阿富汗奥兰群岛阿尔巴尼亚阿尔及利亚美属萨摩亚安道尔安哥拉安圭拉南极洲安提瓜和巴布达阿根廷亚美尼亚阿鲁巴澳大利亚奥地利阿塞拜疆巴哈马巴林孟加拉国巴巴多斯白俄罗斯比利时伯利兹贝宁百慕大不丹玻利维亚波斯尼亚和黑塞哥维那博茨瓦纳布维岛巴西英属印度洋领地文莱达鲁萨兰国保加利亚布基纳法索布隆迪柬埔寨喀麦隆加拿大佛得角开曼群岛中非共和国乍得智利中国圣诞岛科科斯(基林)群岛哥伦比亚科摩罗刚果刚果民主共和国科克群岛哥斯达黎加科特迪瓦克罗地亚古巴塞浦路斯捷克共和国丹麦吉布提多米尼克多米尼加共和国厄瓜多尔埃及萨尔瓦多赤道几内亚厄立特里亚爱沙尼亚埃塞俄比亚福克兰群岛(马尔维纳斯)法罗群岛斐济芬兰法国法属圭亚那法属波利尼西亚法国南部和南极领地加蓬冈比亚格鲁吉亚德国加纳直布罗陀希腊格陵兰岛格林纳达瓜德罗普关岛危地马拉根西几内亚几内亚比绍圭亚那海地赫德岛和麦克唐纳岛圣座(梵蒂冈城国)洪都拉斯香港匈牙利冰岛印度印度尼西亚伊朗伊斯兰共和国伊拉克爱尔兰马恩岛以色列意大利牙买加日本泽西约旦哈萨克斯坦肯尼亚基里巴斯朝鲜民主主义人民共和国韩国科威特吉尔吉斯斯坦老挝人民民主共和国拉脱维亚黎巴嫩莱索托利比里亚利比亚阿拉伯贾马哈里亚列支敦士登立陶宛卢森堡澳门马其顿,前南斯拉夫马其顿共和国马达加斯加马拉维马来西亚马尔代夫马里马耳他马绍尔群岛马提尼克毛里塔尼亚毛里求斯马约特墨西哥密克罗尼西亚联邦摩尔多瓦共和国摩纳哥蒙古黑山蒙特塞拉特摩洛哥莫桑比克缅甸纳米比亚瑙鲁尼泊尔荷兰荷属安的列斯新喀里多尼亚新西兰尼加拉瓜尼日尔尼日利亚纽埃岛诺福克岛北马里亚纳群岛挪威阿曼巴基斯坦帕劳巴勒斯坦被占领土巴拿马巴布亚新几内亚巴拉圭秘鲁菲律宾皮特凯恩波兰葡萄牙波多黎各卡塔尔留尼旺罗马尼亚俄罗斯联邦卢旺达圣赫勒拿圣基茨和尼维斯圣卢西亚圣皮埃尔和密克隆圣文森特和格林纳丁斯萨摩亚圣马力诺圣多美和普林西比沙特阿拉伯塞内加尔塞尔维亚塞舌尔塞拉利昂新加坡斯洛伐克斯洛文尼亚所罗门群岛索马里南非南乔治亚和南桑威奇群岛西班牙斯里兰卡苏丹苏里南斯瓦尔巴和扬马延斯威士兰瑞典瑞士叙利亚阿拉伯共和国中国台湾省塔吉克斯坦坦桑尼亚联合共和国泰国东帝汶多哥托克劳汤加特立尼达和多巴哥突尼斯土耳其土库曼斯坦特克斯和凯科斯群岛图瓦卢乌干达乌克兰阿拉伯联合酋长国美国海外小岛屿乌拉圭乌兹别克斯坦瓦努阿图委内瑞拉越南维尔京群岛,英属维尔京群岛,美属瓦利斯和富图纳西撒哈拉也门赞比亚津巴布韦了解更多关于我们服务的信息,请访问我们的隐私政策,了解New Statesman Media Group可能如何使用、处理和共享您的个人数据,包括有关您关于个人数据的权利的信息,以及如何取消订阅未来的营销信息。我们的服务面向企业订阅者,您保证提交的电子邮件地址是您的企业电子邮件地址。下载免费白皮书谢谢。请检查您的电子邮件以下载白皮书。通过人工智能转型保险流程“仅仅应用人工智能并不能解决问题。您需要非常具体的技术和方法,可能涉及人工智能的组件,比如异常检测算法、推荐引擎,或者合成信息的大型语言模型。”Dataiku的全球解决方案总监John McCambridge表示。“保险业的每一个职能都在努力将数据科学、机器学习和分析融入到他们处理组织内特定职能的方式中。”McConnell补充道。“主要的仍然是简化理赔流程,并努力优化组织的理赔处理能力。最终,我相信先进的保险公司会不遗余力地尝试将分析应用到业务流程中。”人工智能有助于自动化和加速理赔流程,包括初步评估和处理,这导致更快的理赔支付和更高的客户满意度,同时也帮助保险公司评估风险并为投保人确定适当的保费。“风险团队在大量默默无闻的工作中发挥作用,他们利用强大的人工智能组件进行操作。在分析、数据、管道和自动化工作方面,审计团队变得更具效率,可以快速处理大量数据,并以更一致的方式复制他们的努力。”McCambridge说道。算法也可以帮助识别数据中可疑的模式和异常,使保险公司能够检测和防止欺诈行为。保险公司使用传统模型和人工智能模型进行高效的欺诈检测。这些模型依赖于先前的欺诈活动案例,并运用统计技术进行分析。预测建模技术被用来分析和过滤欺诈实例,并识别可疑活动之间的联系,这有助于识别以前未被识别的欺诈模式。除了加强欺诈检测,预测性维护还可以通过分析来自传感器和设备的数据,帮助在财产和责任保险中提前预测和防止损失。提高客户洞察力“现在有大量有趣的第三方数据,您可以通过数据科学模型构建客户非常全面的资料,以了解潜在的未来损失成本,并将这些信息纳入承保过程。”McConnell表示。自动化承保也可能发展到自动化整个过程,从而提高效率,减少手动工作需求,让团队有更多时间专注于价值创造机会和提供更高标准的客户服务。人工智能驱动的聊天机器人和虚拟助手通过提供实时帮助、回答问题和指导客户完成承保流程,从而提升客户体验。理赔和承保工作流程的自动化正在改变领域专家的角色。一些以前由领域专家处理的任务,比如手动数据分析,现在被自动化,但领域专家在优化人工智能模型、解释复杂情况、确保伦理和法律合规以及保持对保险行业的深入了解方面依然至关重要。运营人员和数据科学家之间的紧密合作对于保险公司扩展人工智能项目至关重要。打破孤岛并提供数字工具和知识的访问权限是关键。同样,仅仅建立一个由数据科学家和分析师组成的专业中心,可能无法产生所需的价值,也可能带来新的挑战。确保技术不仅对专业中心开放,也要对其他人开放,以避免孤立和限制有效性。允许保险公司利用传统和机器学习能力的工具组合是最有效的解决方案。Dataiku和Snowflake提供了一个理赔建模解决方案,可以并行构建广义线性模型(GLM)和机器学习模型,通过机器学习和人工智能能力增强保险公司创建传统模型的能力,或者反过来。这使得保险公司可以更快地工作并更有信心地探索新能力,而不会被技术或数据孤立,也不会因手动、繁琐任务而减慢工作进度。保险公司自行业诞生以来就一直在有效地使用分析和统计分析,而人工智能只是这些能力的延伸,使保险公司能够更有效地利用时间和人才,以更快的速度解锁价值创造的机会。本文主题:赞助
您觉得本篇内容如何
评分

评论

您需要登录才可以回复|注册

提交评论

广告

techmonitor

这家伙很懒,什么描述也没留下

关注

点击进入下一篇

赋能百行千业 AI大模型竞速进入新阶段

提取码
复制提取码
点击跳转至百度网盘