小程序
传感搜
传感圈

Making Computer Chips Act More like Brain Cells

2022-08-31 21:58:10
关注

The human brain is an amazing computing machine. Weighing only three pounds or so, it can process information a thousand times faster than the fastest supercomputer, store a thousand times more information than a powerful laptop, and do it all using no more energy than a 20-watt lightbulb.

Researchers are trying to replicate this success using soft, flexible organic materials that can operate like biological neurons and someday might even be able to interconnect with them. Eventually, soft “neuromorphic” computer chips could be implanted directly into the brain, allowing people to control an artificial arm or a computer monitor simply by thinking about it.

Like real neurons — but unlike conventional computer chips — these new devices can send and receive both chemical and electrical signals. “Your brain works with chemicals, with neurotransmitters like dopamine and serotonin. Our materials are able to interact electrochemically with them,” says Alberto Salleo, a materials scientist at Stanford University who wrote about the potential for organic neuromorphic devices in the 2021 Annual Review of Materials Research.

Salleo and other researchers have created electronic devices using these soft organic materials that can act like transistors (which amplify and switch electrical signals) and memory cells (which store information) and other basic electronic components. 

The work grows out of an increasing interest in neuromorphic computer circuits that mimic how human neural connections, or synapses, work. These circuits, whether made of silicon, metal or organic materials, work less like those in digital computers and more like the networks of neurons in the human brain.

Conventional digital computers work one step at a time, and their architecture creates a fundamental division between calculation and memory. This division means that ones and zeroes must be shuttled back and forth between locations on the computer processor, creating a bottleneck for speed and energy use.

The brain does things differently. An individual neuron receives signals from many other neurons, and all these signals together add up to affect the electrical state of the receiving neuron. In effect, each neuron serves as both a calculating device — integrating the value of all the signals it has received — and a memory device: storing the value of all of those combined signals as an infinitely variable analog value, rather than the zero-or-one of digital computers.

Researchers have developed a number of different “memristive” devices that mimic this ability. When you run electric currents through them, you change the electrical resistance. Like biological neurons, these devices calculate by adding up the values of all the currents they have been exposed to. And they remember through the resulting value their resistance takes. 

A simple organic memristor, for example, might have two layers of electrically conducting materials. When a voltage is applied, electric current drives positively charged ions from one layer into the other, changing how easily the second layer will conduct electricity the next time it is exposed to an electric current. (See diagram.) “It’s a way of letting the physics do the computing,” says Matthew Marinella, a computer engineer at Arizona State University in Tempe who researches neuromorphic computing.

Voltage applied at the gate (G)—for example, from a sensor—drives positive ions from one layer, called the electrolyte, into an adjacent layer, an organic polymer. This changes the polymer’s resistance to a current moving from the source (S) to the drain (D). The amount of resistance represents the value being stored. Credit: Knowable; Source: “Organic electronics for neuromorphic computing,” by Yoeri van de Burgt et al., in Nature Electronics, Vol. 1. Published July 13, 2018 https://doi.org/10.1038/s41928-018-0103-3

The technique also liberates the computer from strictly binary values. “When you have classical computer memory, it’s either a zero or a one. We make a memory that could be any value between zero and one. So you can tune it in an analog fashion,” Salleo says.

At the moment, most memristors and related devices aren’t based on organic materials but use standard silicon chip technology. Some are even used commercially as a way of speeding up artificial intelligence programs. But organic components have the potential to do the job faster while using less energy, Salleo says. Better yet, they could be designed to integrate with your own brain. The materials are soft and flexible, and also have electrochemical properties that allow them to interact with biological neurons. 

For instance, Francesca Santoro, an electrical engineer now at RWTH Aachen University in Germany, is developing a polymer device that takes input from real cells and “learns” from it. In her device, the cells are separated from the artificial neuron by a small space, similar to the synapses that separate real neurons from one another. As the cells produce dopamine, a nerve-signaling chemical, the dopamine changes the electrical state of the artificial half of the device. The more dopamine the cells produce, the more the electrical state of the artificial neuron changes, just as you might see with two biological neurons. (See diagram.) “Our ultimate goal is really to design electronics which look like neurons and act like neurons,” Santoro says. 

The biological neuron releases dopamine (red balls) at its junction with the artificial neuron. A solution in the gap gives the dopamine a positive charge (gold balls), which allows it to flow across the device. Electrical resistance depends on how fast the dopamine is released and how much has accumulated on the artificial neuron. Credit: Knowable; Source: “A biohybrid synapse with neurotransmitter-mediated plasticity,” by Scott T. Keene et al., in Nature Materials, Vol. 19. Published June 15, 2020 https://doi.org/10.1038/s41563-020-0703-y

The approach could offer a better way to use brain activity to drive prosthetics or computer monitors. Today’s systems use standard electronics, including electrodes that can pick up only broad patterns of electrical activity. And the equipment is bulky and requires external computers to operate.

Flexible, neuromorphic circuits could improve this in at least two ways. They would be capable of translating neural signals in a much more granular way, responding to signals from individual neurons. And the devices might also be able to handle some of the necessary computations themselves, Salleo says, which could save energy and boost processing speed.

Low-level, decentralized systems of this sort — with small, neuromorphic computers processing information as it is received by local sensors — are a promising avenue for neuromorphic computing, Salleo and Santoro say. “The fact that they so nicely resemble the electrical operation of neurons makes them ideal for physical and electrical coupling with neuronal tissue,” Santoro says, “and ultimately the brain.”

This article originally appeared in Knowable Magazine, an independent journalistic endeavor from Annual Reviews. Sign up for the newsletter.

参考译文
让电脑芯片更像脑细胞
人脑是一台非凡的计算机。它仅重三磅左右,但其处理信息的速度却比最快的超级计算机快1000倍,存储的信息量也比强大的笔记本电脑多1000倍,而且它完成所有这一切所需的能量不超过一只20瓦的灯泡。研究人员正在尝试利用柔软、灵活的有机材料来复制这种成功,这些材料可以像生物神经元一样工作,甚至有一天可能与它们建立连接。最终,这种柔软的“神经形态”计算机芯片可以直接植入人脑,使人们仅通过思考就能控制假肢或电脑显示器。和真正的神经元一样(但与传统计算机芯片不同),这些新型设备可以发送和接收化学信号和电信号。“你的大脑依靠化学物质工作,例如多巴胺和血清素等神经递质。我们的材料能够与它们进行电化学反应,”斯坦福大学的材料科学家阿尔贝托·萨莱奥(Alberto Salleo)说,他在2021年《材料研究年鉴》中撰文探讨了有机神经形态设备的潜力。萨莱奥和其他研究人员已经利用这些柔软的有机材料制造出电子设备,它们可以像晶体管(放大和切换电信号)和存储单元(存储信息)以及其他基本电子元件一样工作。这项研究源自人们对神经形态计算机电路日益增长的兴趣,这些电路模仿人脑神经连接(或突触)的工作方式。无论这些电路是用硅、金属还是有机材料制成,它们的工作方式都与数字计算机中的电路不同,更接近人脑中的神经元网络。传统的数字计算机一次只执行一个步骤,其架构在计算和存储之间形成了根本性的分离。这意味着0和1必须在计算机处理器的不同位置之间来回传输,从而造成速度和能耗方面的瓶颈。大脑则采用不同的方式。单个神经元接收来自许多其他神经元的信号,所有这些信号加在一起,影响接收神经元的电状态。实际上,每个神经元既是计算设备——整合它所接收的所有信号的值——又是存储设备,将这些信号的组合值存储为无限可变的模拟值,而不是数字计算机中的0或1。研究人员已经开发出多种不同的“忆阻器”设备,以模仿这种能力。当电流通过它们时,会改变它们的电阻。与生物神经元类似,这些设备通过将它们所经历的所有电流的值相加进行计算。它们通过电阻的变化来记住这些值。例如,一个简单的有机忆阻器可能包含两层导电材料。当施加电压时,电流会将带正电的离子从一层驱动到另一层,改变第二层下次接触电流时导电的容易程度。(见图示)“这是一种让物理学完成计算的方式,”坦佩市亚利桑那州立大学的计算机工程师马修·马里内拉(Matthew Marinella)说。当在栅极(G)——例如来自传感器——施加电压时,带正电的离子从一层(电解质)被驱动到相邻的另一层(有机聚合物)。这会改变聚合物从源极(S)到漏极(D)的电流电阻。电阻的大小表示所存储的值。资料来源:Knowable;来源:Yoeri van de Burgt 等撰写的《用于神经形态计算的有机电子器件》,发表于《自然电子学》,第1卷,2018年7月13日出版,https://doi.org/10.1038/s41928-018-0103-3。这种方法还使计算机摆脱了严格的二进制值。“传统计算机内存要么是0,要么是1。而我们制造的内存可以在0和1之间取任意值。因此你可以以模拟方式对其进行调节,”萨莱奥说。目前,大多数忆阻器和相关设备并不是基于有机材料,而是使用标准的硅芯片技术。有些甚至已经被商业使用来加速人工智能程序。但萨莱奥表示,有机组件有可能更快地完成任务,同时消耗更少的能量。更重要的是,它们可以设计成与你的大脑集成。这些材料柔软、灵活,同时具有电化学特性,使它们能够与生物神经元相互作用。例如,现在在德国亚琛工业大学担任电气工程师的弗朗切斯卡·桑托罗(Francesca Santoro)正在开发一种聚合物器件,它可以接收来自真实细胞的输入并“学习”这些输入。在她的器件中,真实细胞与人工神经元之间存在一个微小的空间,类似于真实神经元之间的突触。当细胞释放神经信号化学物质——多巴胺时,它会改变人工设备的电状态。细胞释放的多巴胺越多,人工神经元的电状态的变化也就越大,就像两个真实的生物神经元之间的反应一样。(见图示)“我们的最终目标是真正设计出看起来像神经元、工作方式也像神经元的电子器件,”桑托罗说。生物神经元在其与人工神经元的连接处释放多巴胺(红色球体)。间隙中的溶液赋予多巴胺正电荷(金色球体),使其能够在器件中流动。电流的电阻取决于多巴胺释放的速度和在人工神经元上积累的量。资料来源:Knowable;来源:Scott T. Keene 等撰写的《一种以神经递质介导可塑性的生物混合突触》,发表于《自然材料》,第19卷,2020年6月15日出版,https://doi.org/10.1038/s41563-020-0703-y。这种方法可能会为利用大脑活动来驱动假肢或电脑显示器提供更好的方式。目前的系统使用标准电子设备,包括只能检测到广泛电活动模式的电极。而且这些设备体积庞大,需要外部计算机才能运行。灵活的神经形态电路至少可以通过两种方式改善这一点。它们能够以更精细的方式翻译神经信号,响应来自单个神经元的信号。萨莱奥表示,这些设备还可能自行处理一些必要的计算,从而节省能源并提高处理速度。萨莱奥和桑托罗表示,这种低层次的分布式系统——小型的神经形态计算机在接收到局部传感器的信息后处理信息——是神经形态计算充满前景的发展方向。“它们能够很好地模仿神经元的电活动,因此非常适合作为与神经组织,甚至是大脑进行物理和电连接的工具,”桑托罗说。本文最初发表于Knowable杂志,该杂志是Annual Reviews开展的独立新闻报道项目。订阅我们的通讯。
您觉得本篇内容如何
评分

评论

您需要登录才可以回复|注册

提交评论

广告
提取码
复制提取码
点击跳转至百度网盘